
VIRTUALIZING
HPC THROUGHPUT
COMPUTING ENVIRONMENTS

WHITE PAPER – APRIL 2018

W H I T E PA P E R | 2

VIRTUALIZING HPC THROUGHPUT COMPUTING ENVIRONMENTS

Contents

Introduction. . 3

Virtualizing HPC Workloads. . 3

HPC Workloads. . 4

HPC Environments. . 6

Virtualization Considerations. . 7

Test Bed Configuration . . 8

CPU Overcommitment . . 9

Job Execution Time. . 10

CPU Utilization. . 12

Per-Cluster CPU Utilization. . 13

CPU Overcommitment with Shares. . 14

Summary	 . . 16

References. . 16

Contributors. . 17

W H I T E PA P E R | 3

VIRTUALIZING HPC THROUGHPUT COMPUTING ENVIRONMENTS

Introduction
High Performance Computing (HPC) workloads have traditionally been run only
on bare-metal, unvirtualized hardware. However, performance of these highly
parallel technical workloads has increased dramatically over the last decade with
the introduction of increasingly sophisticated hardware support for virtualization,
enabling organizations to begin to embrace the numerous benefits that a
virtualization platform can offer.

To demonstrate the results of this continuing performance improvement, this paper
explores the application of virtualization to HPC and evaluates the performance of
HPC workloads in a virtualized, multitenant computing environment.

With parallelism being the key to achieving high performance, HPC usually involves
a large number of processes that run simultaneously. Depending on the amount of
communication among the parallel processes, HPC workloads can be broadly divided
into throughput workloads and parallel distributed workloads. This pioneering study
focuses primarily on the virtual performance of throughput workloads. Detailed
information related to parallel distributed workloads—primarily MPI workloads—can
be found in “References” [2,3].

Virtualizing HPC Workloads
Although HPC workloads are most often run on bare-metal systems, this has started
to change over the last several years as organizations have come to understand that
many of the benefits that virtualization offers to the enterprise can often also add
value in HPC environments. The following are among those benefits:

•	Supports a more diverse end-user population with differing software
requirements – By using virtual machines (VMs), each user or group can run
the operating system (OS) and other software that are most effective for their
needs, and these different software environments can be freely mixed on the
same hardware. In addition, that mix can be changed dynamically as user
requirements change, which enables IT departments to increase overall agility
and to help decrease time to solution for researchers, scientists, and engineers.

•	Provides data security and compliance by isolating user workloads into separate
VMs, including running within different software-defined virtual networks – This
ensures that projects (for example, studies involving clinical data) maintain control
over their data and that the data is not shared inappropriately with other users. In
addition, data security can be achieved while allowing projects to share underlying
hardware, increasing overall utilization of physical resources.

•	Provides fault isolation, root access, and other capabilities not available in traditional
HPC environments through the use of VMs – By running users’ jobs within dedicated
VMs, each user can be protected from problems caused by other users, a common
issue in bare-metal HPC environments in which jobs from multiple users are
frequently run within the same OS instance. In addition, the isolating nature of
the VM abstraction means that root access can be granted to those users who
require it, because that privilege is granted only within the VM and it does not
compromise the security of other users or their data.

W H I T E PA P E R | 4

VIRTUALIZING HPC THROUGHPUT COMPUTING ENVIRONMENTS

•	Creates a more dynamic IT environment in which VMs and their encapsulated
workloads can be live-migrated across the cluster for load balancing, for
maintenance, for fault avoidance, and so on – This is a considerable advance over
the traditional approach of statically scheduling jobs onto a bare-metal cluster
without any ability to reassess those placement decisions after the fact. Such
dynamic workload migration can increase overall cluster efficiency and resilience.

HPC Workloads
In HPC, performance is of paramount importance, and delivering high performance
in the VMware virtual environment has been a key part of the work required to make
virtualization viable for these workloads.

HPC workloads can be broadly divided into two categories: parallel distributed
workloads and throughput workloads. Parallel distributed applications—often
these are MPI applications, referring to the most popular messaging library for
building such applications—consist of many simultaneously running processes that
communicate with each other, often with extremely high intensity. Because this
communication is almost always in the critical performance path, the HPC community
has adopted specialized hardware and software to achieve the lowest possible
latency and highest bandwidth to support running these applications efficiently.

H
al

f R
ou

nd
-T

rip
 L

at
en

cy
 (
µs
)

Message Size (Bytes)

Native

ESXi 5.5

ESXi 6.0

ESXi 6.0u1

ESXi 6.5

3.5

3

2.5

2

1.5

1

1 2 4 8 16 32 64 128 256 512 1024

0.5

0

1

Figure 1. Improvement in InfiniBand Latency over Several Versions of the ESXi Hypervisor

NOTE: Lower is better.

W H I T E PA P E R | 5

VIRTUALIZING HPC THROUGHPUT COMPUTING ENVIRONMENTS

InfiniBand and RDMA are the two most widely used hardware and software
approaches for HPC message passing, and they can be used in a virtual environment
as well. Figure 1 shows how InfiniBand latencies under a VMware vSphere® platform
using VMware vSphere DirectPath I/O™ have improved over the last several releases
of VMware ESXi™, the vSphere hypervisor. Latencies now approach those achievable
without virtualization, and Figure 2 shows performance results for a variety of popular
open-source and commercial MPI applications. These tests were run on a 16-node
EDR InfiniBand cluster running one large VM per node. As can be seen when
compared to Figure 3, the degradations can be higher with this workload class than
with throughput workloads. Because overheads depend on the specific application,
the model being used, and the scale at which the application is run, a proof-of-
concept deployment is often recommended to determine achievable acceptable
performance. Additional information about MPI performance can be found on the
Dell Community site [3].

Pe
rf

or
m

an
ce

 R
at

io

FLUENT

GROMACS

LAMMPS

LS-DYNA

NAMD

OpenFOAM

STAR-CCM+

WRF

1

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0

Figure 2. Performance of a Variety of MPI Applications Running on a 16-Node Cluster
Using 320 MPI Processes

NOTE: Results are shown as the ratios of unvirtualized and virtualized performance. Higher is better.

Throughput workloads often require a large number of tasks to be run to complete a
job, with each task running independently with no communication between the tasks.
Rendering the frames of a digital movie is a good example of such a throughput
workload: Each frame can be computed independently and in parallel; when all
frames have been computed, the overall job has been completed. Throughput
workloads currently run with very little degradation on vSphere, typically either
a percentage point or two of degradation, and in some circumstances they can
run slightly faster when virtualized. Figure 3 shows performance comparisons for
a popular set of life sciences throughput benchmarks, illustrating that virtual
performance can be very similar to unvirtualized for this workload class. In these
tests, we compare the runtime of each program in the benchmark suite, running
each within a VM and on bare metal, using identical hardware and OSs for each test.

W H I T E PA P E R | 6

VIRTUALIZING HPC THROUGHPUT COMPUTING ENVIRONMENTS

For these tests, we run just a single instance of a benchmark at a time and study how
well the performance of that benchmark compares when run in a virtual environment
as opposed to a bare-metal environment. In later sections, we move beyond such
simple evaluations of individual application performance and focus instead on the
more typical case in which a large number of such tasks are scheduled and run on the
nodes of an HPC cluster. In this scenario, the metric of interest is cluster throughput—
the time needed to complete a specified set of tasks on the cluster.

Pe
rf

or
m

an
ce

 R
at

io

1

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0

CLUSTALW
GLIMMER
GRAPPA
HMMER
PHYLIP
PREDATOR
TCOFFEE
BLAST
FASTA

Figure 3. Performance of Typical HPC Throughput Applications

NOTE: Results are shown as the ratios of unvirtualized and virtualized performance. Higher is better.

HPC Environments
HPC infrastructure typically consists of a cluster of nodes, ranging from tens to
hundreds of thousands, to support a large degree of parallelism. The nodes in such
a complex system are often split into multiple partitions based on their roles, such
as login nodes, management nodes, and compute nodes. An illustration of an HPC
platform can be seen in Figure 4. Rather than directly accessing the compute
resources, users submit and manage jobs via login nodes, which are sometimes
duplicated for load balancing and fault tolerance. To efficiently share the resources
among multiple users while being able to enforce specific rules for fairness and
quality of service, most production HPC systems execute user jobs on a pool of
compute nodes in a batch mode. That is, each user-submitted job is first put into
a job queue, waiting until a job scheduler acquires the requested resources from
a resource manager. After the resources are obtained, they are then allocated to
the job. The job scheduler and resource manager are management services that
run on dedicated management nodes.

W H I T E PA P E R | 7

VIRTUALIZING HPC THROUGHPUT COMPUTING ENVIRONMENTS

Management Nodes

Compute Nodes

Login NodesNetworkUser

Figure 4. Illustration of an HPC Platform

Virtualization Considerations
Virtualization brings new flexibility to HPC. With that flexibility, however, one must
be careful to configure the virtual environment to simultaneously achieve both agility
and high performance. This section provides some guidance relative to throughput
computing environments—that is, environments in which most or all of the tasks are
throughput computing tasks.

Although it is possible to create a single virtual cluster that spans an entire physical
cluster with one maximally sized VM per node, this approach misses the opportunity
to enable several important virtualization benefits. Among these are the ability
to support per-user or per-project software stacks as well as security and fault
separation between user workloads. In the more typical case, multiple virtual
clusters should be hosted simultaneously on the physical cluster.

In a situation in which a project is using resources very intensively—when they
are essentially driving their assigned physical resources to 100 percent utilization
continuously—it might make most sense to assign the project to its own dedicated
subset of hardware and to configure VMs on those nodes appropriately for the
project. With two such projects, one can either place their VMs on a nonoverlapping
set of nodes or place them on the same nodes, being careful to size their VMs to
avoid any overcommitment. Typically, the size of each such VM is set to the number
of cores available in each underlying physical CPU to take advantage of the hardware
NUMA topology. This approach works well if the virtual clusters are so heavily loaded
that few cycles are left unused on each node. However, it is often the case that such
projects do not in actuality show this degree of resource intensity. Although they
might be very busy and resource constrained in some time periods, they can also be
less busy and even idle in other periods. In such cases, sizing VMs as described—so
that they partition the available physical cores—can lead to commensurate losses
in throughput because the idle CPUs serving one VM are not available to the other
busy VM.

W H I T E PA P E R | 8

VIRTUALIZING HPC THROUGHPUT COMPUTING ENVIRONMENTS

The key to avoiding this potential issue is CPU overcommitment. By creating two
VMs on a host, each configured to the full number of physical cores on the node,
it is now possible for each VM to potentially use all available CPU resources when
the other VM is idle. This paper explores this scenario in detail to evaluate whether
such an approach can deliver similar job throughput rates to that achievable with a
bare-metal cluster.

The experiments are conducted in two phases: First, the evaluation is done with the
assumption that each virtual cluster is given equal access to the underlying physical
resources. In the second phase, we introduce the concept of CPU shares, which
enable assigning relative scheduling weights to the VMs of a cluster so that one
cluster can be scheduled preferentially relative to another. Customers have found
that this approach brings significant flexibility to their virtualized HPC environments
by adding a quality-of-service capability.

Test Bed Configuration
To evaluate performance in a realistic HPC throughput computing environment, we
built an 18-node test bed with Dell PowerEdge servers as a part of a collaboration
with the Dell EMC HPC and AI Innovation Lab in Austin, Texas. In this test bed,
one server is dedicated as the login node, one as the management node, and the
remaining 16 as the compute nodes. Each node is configured with dual 10-core
processors and 128GB of memory. More details can be found in Table 1. To achieve
the best performance, BIOS settings are tuned, as shown in Table 2.

Cluster 18 nodes

Server Dell PowerEdge C6320

Processor Dual 10-core Intel Xeon Processor E5-2660 v3 @ 2.6GHz (Haswell)

Memory 128GB DDR4

Interconnect 1Gb Ethernet

Table 1. Hardware Configuration

System Profile PerfOptimized

Logical Processor Enabled

Virtualization
Technology

Enabled

Turbo Boost
Technology

Enabled

Table 2. BIOS Settings

W H I T E PA P E R | 9

VIRTUALIZING HPC THROUGHPUT COMPUTING ENVIRONMENTS

For our performance evaluation, each node is installed with two execution
environments, that is, a native OS and a virtualized guest OS on top of an ESXi
hypervisor. For fairness, CentOS 7.2 with kernel version of 3.10.0-327.el7.x86_64 is
used in both environments. Throughout the experiments, the TORQUE Resource
Manager is used with its default job scheduler. The software stack is shown in Table 3.
Seven HPC throughput benchmarks from the PolyBench/C version 3.1 and BioPerf
benchmark suite are selected, as shown in Table 4. When running throughput tests in
various configurations, each of these seven benchmarks is run 464 times in a random
but consistent order to generate an hour-long job sequence.

ESXi Hypervisor 6.5.0

Native/Guest OS CentOS 7.2 (3.10.0-327.el7.x86_64)

Resource Manager/Job Scheduler TORQUE 6.1.0/pbs_sched

Benchmarks Seven benchmarks from PolyBench/C 3.1 and BioPerf

Table 3. Software Stack

3mm Three matrix multiplications

gemm Matrix-multiply

symm Symmetric matrix-multiply

syr2k Symmetric rank-2k operations

syrk Symmetric rank-k operations

trmm Triangular matrix-multiply

T-Coffee Sequential multiple sequence alignment

Table 4. Benchmarks

CPU Overcommitment
With the test bed described in the previous section, a fair performance comparison
between bare-metal and virtual clusters is to contrast the completion time for a fixed
sequence of jobs. For this test, we first boot Linux on each node and time how long
it takes to run the job stream through this physical TORQUE cluster. We then reboot
the machines with the ESXi hypervisor and run the same throughput test on a
virtual TORQUE cluster built using one VM per node. However, in a virtualized HPC
environment, there is an extra configuration parameter—the number of VMs on
each host—an exclusive advantage of virtualization that supports multitenancy and
resource sharing. As has been confirmed in many enterprise use cases, resource
consolidation can improve utilization and thereby increase overall throughput. To
verify if this also applies to HPC throughput computing, we experimented with CPU
overcommitment in this work.

W H I T E PA P E R | 1 0

VIRTUALIZING HPC THROUGHPUT COMPUTING ENVIRONMENTS

While keeping each VM configured with the same number of cores as its physical
host, CPU overcommitment is achieved through simultaneously running multiple
VMs on each host. Specifically, one, two, and four VM(s) per host have been tested
to achieve up to 4X CPU overcommitment. When multiple VMs execute on an ESXi
host, a work-conserving, share-based scheduler allocates CPU time to VMs based on
the shares of each VM [1]. In this first set of tests, all VMs are configured with equal
shares. The performance with unequal shares will be discussed in the next section.

To mimic a real user-private, overcommitted execution environment, four TORQUE
clusters are built to create four separate virtual clusters. Each virtual cluster consists
of one TORQUE head node and 16 TORQUE MOMs,1 all of which run as VMs spread
across the 18 hosts of the underlying physical cluster. This is illustrated in Figure 5. In
each experiment, the number of virtual clusters that are powered on depends on the
overcommitment factor. For example, when 2X CPU overcommitment is chosen, only
two virtual clusters will be powered on, while the other two will not consume any
resource on the physical cluster.

To study solely the effect of CPU overcommitment and avoid memory
overcommitment, in the virtual environment 28GB of memory on each node
is always reserved for the ESXi hypervisor instance, and the remaining 100GB
is evenly split among the running VMs. For example, when four VMs are running
on each host, each VM is given a reservation of 25GB memory.

Torque head 4 mom 1_4 mom 2_4 mom 3_4 mom 16_4

Torque head 3 mom 1_3 mom 2_3 mom 3_3 mom 16_3

Torque head 2 mom 1_2 mom 2_2 mom 3_2 mom 16_2

Torque head 1

ESXi 0

Management

ESXi 1

Compute 1

ESXi 2

Compute 2

ESXi 3

Compute 3

ESXi 16

Compute 16

mom 1_1 mom 2_1 mom 3_1 mom 16_1

VM

ESXi

Node

Figure 5. Four Virtual Clusters Share a Single Physical Cluster to Achieve 4X CPU Overcommitment

NOTE: Each dotted-line enclosure designates a separate virtual cluster.

Job Execution Time
To perform fair comparisons between test scenarios with differing numbers of
active TORQUE clusters, we must ensure that the sequence of jobs that runs on
the hardware in each scenario is approximately the same. To achieve this, we
adopt a bottom-up approach by first generating a randomized job stream with
each of the seven benchmarks repeated 116 times, for a total of 812 jobs. In the
4X overcommitment case in which four virtual TORQUE clusters execute jobs
simultaneously, each of the clusters is fed a copy of this job stream, resulting in a
total of 3,248 jobs being run over the course of this test. For the 2X overcommitment
case with two active clusters, two copies of the 812-job stream are combined in an

1 The TORQUE term for compute node manager.

W H I T E PA P E R | 1 1

VIRTUALIZING HPC THROUGHPUT COMPUTING ENVIRONMENTS

interleaved manner to produce a new job stream containing 1,624 jobs. This 1,624-job
stream is fed to each of the two active clusters, resulting in the same number of jobs
run as in the 4X test case (3,248) and with jobs launched in approximately the same
order. Finally, two copies of the 1,624-job stream are combined again to create a third
job stream with 3,248 jobs, which is fed to the single active cluster for bare-metal
and single–virtual-cluster tests. This approach ensures that the same job sequence
is used in all test cases to ensure fairness.

Using the job streams previously described, the average execution time of
three runs in different environments is shown in Figure 6. Because each node
in our test bed has 20 cores, in the first experiment we configured each
TORQUE MOM with 20 job slots. As reflected in Figure 6, the execution with
one virtual cluster is very close to that of bare metal (first column), with only
a 2.2 percent overhead. Furthermore, when multiple virtual clusters are used
to achieve CPU overcommitment, the execution time is reduced, implying an
improved throughput. Through careful analysis, we identified that the throughput
improvement can mainly be attributed to increased CPU utilization when more
jobs are concurrently scheduled to execute. This has been verified by modifying
each TORQUE MOM in the bare-metal environment to use 40 job slots, after
which the throughput is improved to the same level as the overcommitted
virtual environment. This can be seen in the second column of Figure 6. We
will analyze CPU utilization in the following section.

Ti
m

e(
s)

4,000

3,500

3,000

2,500

2,000

1,500

1,000

500

0
Bare Metal
(Slots=20)

Job Execution Time

Bare Metal
(Slots=40)

One Virtual
Cluster

Two Virtual
Clusters

Four Virtual
Clusters

Figure 6. Comparison of Job Execution Time Between Bare Metal and Virtual

NOTE: Lower is better.

W H I T E PA P E R | 1 2

VIRTUALIZING HPC THROUGHPUT COMPUTING ENVIRONMENTS

CPU Utilization
Besides execution time, another performance metric that we monitored is the total
CPU utilization across the whole physical cluster. In an ESXi ssh session, the esxtop
tool can gather a variety of metrics at fine granularity to give a detailed view of
system state. We used esxtop running on each compute node to sample CPU
utilization of all VMs at 5-second intervals, and the results for one, two, and four
virtual clusters are shown in Figure 7. With two and four virtual clusters, the
decreasing trend at the end is due to job completion.

A
gg

re
ga

te
 v

CP
U

 P
er

ce
nt

ag
e

U
se

d
By

 A
ll

V
irt

ua
l C

lu
st

er
s

50,000

45,000

40,000

35,000

30,000

25,000

20,000

15,000

10,000

5,000

0

1 51

Sample

One Virtual Cluster Two Virtual Clusters Four Virtual Clusters

101 151 201 251 301 351 401 451

Figure 7. Total CPU Utilization Across 16 Nodes

Theoretically, the peak CPU utilization across the whole cluster can be calculated as
16 * 20 * 100 percent = 32,000 percent, given that there are 16 nodes and each node
has 20 cores. However, Figure 7 shows that in all cases, the actual CPU utilization
is well above the theoretical peak. Two factors contribute to the extra gains: Intel
Hyper-Threading and Turbo Boost technologies. Because Hyper-Threading on
average improves CPU utilization by about 25 percent, utilization values measured
by the ESXi hypervisor are multiplied by 1.25 when reported by esxtop. Therefore,
displayed peak utilization is increased from 32,000 percent to 40,000 percent.
Furthermore, Turbo Boost frequently increases the CPU clock rate. In the case
of two and four virtual clusters, Turbo Boost can increase CPU utilization to
approximately 42,500 percent. The Turbo Boost effect has been verified by
checking the esxtop power management panel, in which the %A/MPERF value
indicates whether Turbo Boost is being used [4].

W H I T E PA P E R | 1 3

VIRTUALIZING HPC THROUGHPUT COMPUTING ENVIRONMENTS

Clearly, the job execution times in Figure 6 are consistent with the CPU utilizations
in Figure 7 for all the virtual cases. For example, the lowest CPU utilization case—
one virtual cluster—matches the longest job execution time, and higher CPU
utilization with two and four virtual clusters corresponds to shorter execution time.
It is straightforward that the higher CPU utilization with two and four virtual clusters
is due to resource consolidation brought about by virtualization. That is, when
multiple virtual clusters share a physical cluster, the CPU scheduler on each ESXi
host has more jobs to schedule and is therefore able to make better scheduling
decisions by taking advantage of Hyper-Threading and eliminating idle cycles.
At the same time, improved utilization comes with better consistency, where
the utilization with two and four virtual clusters is much smoother than in the
single-cluster case, as can be seen in Figure 7.

Per-Cluster CPU Utilization
In a real production HPC system, an important principle is fairness when multiple
users are sharing the computing resources. This is also true in a virtualized
environment. In particular, the previously mentioned CPU overcommitment
configurations are representative of a future virtualized HPC environment where
each user or group is given a virtual cluster during resource allocation. We can
delve a little deeper into the two– and four–virtual cluster aggregate results in the
previous section and examine the per-cluster CPU utilization in each case as shown
in Figure 8. It is clear in both cases that the ESXi scheduler effectively maintains
fairness so that each virtual cluster gets the same amount of CPU resources.

vC
PU

 P
er

ce
nt

ag
e

U
se

d
Pe

r V
irt

ua
l C

lu
st

er

25,000

20,000

15,000

10,000

5,000

0
1 51 101 151 201 251 301 351 401 451

Cluster 1

Sample

Cluster 2

Figure 8a. Per-Cluster CPU Utilization: Two Virtual Clusters

W H I T E PA P E R | 1 4

VIRTUALIZING HPC THROUGHPUT COMPUTING ENVIRONMENTS

vC
PU

 P
er

ce
nt

ag
e

U
se

d
Pe

r V
irt

ua
l C

lu
st

er

12,000

10,000

8,000

6,000

4,000

2,000

0

1 51 101 151 201 251 301 351 401 451

Cluster 1

Sample

Cluster 2 Cluster 3 Cluster 4

Figure 8b. Per-Cluster CPU Utilization: Four Virtual Clusters

CPU Overcommitment with Shares
In addition to the basic benefits of virtualization previously described, the
proportional, share-based scheduler of the ESXi hypervisor offers another very
useful degree of flexibility. This section continues the CPU overcommitment study
by configuring virtual clusters with different shares, as can be done when creating
a multitenant environment with quality-of-service guarantees.

With the use of CPU resource shares, each VM can be given a particular guaranteed
share of CPU resources, which is difficult to achieve in a bare-metal system. When
there are multiple VMs running on an ESXi host, the ESXi scheduler allocates CPU
resources based on the ratio of shares among all the running VMs. For example,
when there are two VMs, with shares of 30,000 and 10,000, the ESXi scheduler sees
a 3:1 ratio and guarantees that the two VMs get 75 percent and 25 percent of CPU
time, respectively. However, the ESXi scheduler is also work conserving in that if
any VM does not fully use its shares, the other VMs are allowed to use more than
their configured shares. This feature extends to a virtualized HPC system when it is
composed of a cluster of ESXi hosts. Specifically, each user or group can be given
an appropriate share of the physical system when their virtual cluster is allocated.

As a first experiment, we set the shares for the VMs in two virtual clusters to achieve
a 3:1 ratio between the two VMs on each compute node. In this case, the average
CPU utilization across three runs is 36,945 percent, which lies between the utilization
level of one virtual cluster and that of two virtual clusters with equal shares. The total
CPU utilization for both clusters as well as the per-cluster CPU utilizations from one
run are shown in Figure 9. Recall that two virtual clusters with equal shares achieves
the maximum CPU utilization. The lower CPU utilization in this unequal-share case

W H I T E PA P E R | 1 5

VIRTUALIZING HPC THROUGHPUT COMPUTING ENVIRONMENTS

is expected, because from time to time the scheduler must allocate exclusive CPU
access to the higher-share virtual cluster to guarantee that it receives its configured
CPU share. The exclusive access allocation essentially temporarily disables the effect
of Hyper-Threading and therefore reduces the total CPU utilization. As a result of this,
the actual measured CPU utilization ratio between the two virtual clusters is 2.8:1.

45,000

40,000

35,000

30,000

25,000

20,000

15,000

10,000

5,000

0
1 51 101 151 201 251 301 351 401 451

Cluster 1

Sample

Cluster 2 All Clusters
vC

PU
 P

er
ce

nt
ag

e
U

se
d

Pe
r V

irt
ua

l C
lu

st
er

Figure 9. CPU Utilization for Two Virtual Clusters with 3:1 Shares

Lowered CPU utilization is undesirable and, by eliminating the need for the CPU
scheduler to occasionally provide exclusive CPU access, it can be avoided while still
allowing unequal shares to be used. To do this, consider that when two VMs with
equal shares are each running a thread on the same physical core, they each use
50 percent of the core (reported as 62.5 percent due to the 1.25X utilization factor in
effect when Hyper-Threading is enabled). When these two VMs are given shares such
that the higher-share VM is entitled to more than 62.5 percent of the CPU resources,
the scheduler occasionally will give that VM exclusive access to the CPU to ensure
that it is receiving its promised share of CPU resources. In the case of the 3:1 ratio
previously mentioned, one VM is promised 75 percent of the resources, which is
greater than the 62.5 percent threshold. Therefore, occasional exclusive access is
granted, resulting in slightly lower overall utilization of the physical core because
only one hyper-thread is active during this time. However, if ratios are chosen such
that no VM is given more than 62.5 percent of the CPU resources, exclusive access
need not be granted. For example, when increasing the number of virtual clusters
to four and giving them 2:1:1:1 shares, their respective CPU entitlements—considering
the 1.25X utilization factor—are 50, 25, 25, and 25 percent. Because all of these
entitlements are less than 62.5 percent, maximum overall CPU utilization is achieved,
as is shown in Figure 10. Figure 10 further shows that the measured CPU utilization
ratio among the virtual clusters is the same as the specified shares ratio.

W H I T E PA P E R | 1 6

VIRTUALIZING HPC THROUGHPUT COMPUTING ENVIRONMENTS

45,000

40,000

35,000

30,000

25,000

20,000

15,000

10,000

5,000

0

1 51 101 151 201 251 301 351 401 451

Cluster 1

Sample

Cluster 2 Cluster 3 Cluster 4 All Clusters

vC
PU

 P
er

ce
nt

ag
e

U
se

d
Pe

r V
irt

ua
l C

lu
st

er

Figure 10. CPU Utilization for Four Virtual Clusters With 2:1:1:1 Shares

Summary
A rising trend toward virtualizing HPC environments is being driven by a motivation
to take advantage of the increased flexibility and agility that virtualization offers.
This paper explores the concepts of virtual throughput clusters and CPU
overcommitment with VMware vSphere to create multitenant and agile virtual
HPC computing environments that offer the ability to deliver quality-of-service
guarantees between HPC users with good aggregate performance. Results from
this work demonstrate that HPC users can expect similar to native performance for
HPC throughput workloads while enjoying the various benefits of virtualization.

References
[1] VMware, Inc. The CPU Scheduler in VMware vSphere 5.1 technical white paper. 2013.

[2] VMware, Inc. Performance of RDMA and HPC Applications in Virtual Machines Using FDR
InfiniBand on VMware vSphere technical white paper. Na Zhang and Josh Simons. 2016.

[3] Dell, Inc. “Virtualized HPC Performance with VMware vSphere 6.5 on a
Dell PowerEdge C6320 Cluster” blog. 2017.

[4] Yellow Bricks. “ESXTOP” blog. Duncan Epping.

https://www.vmware.com/techpapers/2013/the-cpu-scheduler-in-vmware-vsphere-51-10345.html
https://www.vmware.com/files/pdf/techpaper/vmware-fdr-ib-vsphere-hpc.pdf
https://www.vmware.com/files/pdf/techpaper/vmware-fdr-ib-vsphere-hpc.pdf
http://en.community.dell.com/techcenter/high-performance-computing/b/general_hpc/archive/2017/04/05/virtualized-hpc-performance-with-vmware-vsphere-6-5-on-a-dell-poweredge-c6320-cluster
http://en.community.dell.com/techcenter/high-performance-computing/b/general_hpc/archive/2017/04/05/virtualized-hpc-performance-with-vmware-vsphere-6-5-on-a-dell-poweredge-c6320-cluster
http://www.yellow-bricks.com/esxtop/

W H I T E PA P E R | 1 7

VIRTUALIZING HPC THROUGHPUT COMPUTING ENVIRONMENTS

Contributors
Michael Cui is a member of technical staff in the VMware Office of the CTO,
working on virtualizing High Performance Computing. Previously, he was a research
assistant and part-time instructor at the University of Pittsburgh, where his research
was supported by multiple grants from the National Science Foundation and the
U.S. Department of Energy. He holds both a PhD and a master’s degree in computer
science from the University of Pittsburgh.

Josh Simons is chief technologist for High Performance Computing, working in
the VMware Office of the CTO, where he currently leads an effort to bring the
value of virtualization to HPC. Previously, he was a distinguished engineer at
Sun Microsystems, working on HPC; prior to Sun, he worked at Thinking Machines
Corporation. Josh has a degree in engineering from Harvard College and a
master’s in computer science from Harvard University. He is currently serving
on the OpenMP Board of Directors.

VMware, Inc. 3401 Hillview Avenue Palo Alto CA 94304 USA Tel 877-486-9273 Fax 650-427-5001 www.vmware.com
Copyright © 2018 VMware, Inc. All rights reserved. This product is protected by U.S. and international copyright and intellectual property laws. VMware products are covered by one or more patents listed at
http://www.vmware.com/go/patents. VMware is a registered trademark or trademark of VMware, Inc. and its subsidiaries in the United States and other jurisdictions. All other marks and names mentioned herein
may be trademarks of their respective companies. Item No: VMW-WP-HPC-Throughput-USLET-101
4/18

